If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+48y+108=0
a = 1; b = 48; c = +108;
Δ = b2-4ac
Δ = 482-4·1·108
Δ = 1872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1872}=\sqrt{144*13}=\sqrt{144}*\sqrt{13}=12\sqrt{13}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-12\sqrt{13}}{2*1}=\frac{-48-12\sqrt{13}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+12\sqrt{13}}{2*1}=\frac{-48+12\sqrt{13}}{2} $
| 5sX4=40 | | 5k-10=30k+9 | | -81-9x=27 | | 2/4x+3=13 | | b+0.6=–1 | | 130=39.13+0.50x | | 8*x=70 | | 55=6x-23 | | 5x+6-3x-7-x=4 | | 3n-40=2n=15 | | 5(2x-1)+3x=2x-7-9 | | √x/3+1=4 | | 241=73-8x | | d/3+5=36 | | 2a–7=21a= | | 68=4v+8 | | 4d-d=5d-8 | | 2a–7=21 | | 5h+4=-16 | | -12+4x=44 | | -7p=1 | | Y=x^2-19 | | 5x-15/2=15 | | |1-x|=6 | | 2w+17=33 | | 9^(x-3)=27 | | -3(3x+15)-10(10+x)=35 | | 4x-3^5=2^5 | | 2(9+n)=20 | | 8y-10=3(-2+6) | | x/51=-2 | | 2(2x+1)2x=50 |